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Abstract. We study the quantum Lorentz gas with point interactions. We use the explicit 
form of the resolvent of this system to set up an expansion for the pressure and the central 
limit theorem to sum the many random contributions to the scattering of the light particle 
due to the heavy particles. We also discuss the convergence of our expansion. 

1. Introduction 

The purpose of this paper is to use a novel expansion and a central limit argument to 
study virial coefficients for the quantum Lorentz gas with point interactions with finitely 
many centres. We begin by describing the model and establishing our notation. 

We consider a cubic box of volume V =  L3 in M3 where there are N fixed ‘heavy’ 
scatterers fixed at positions R I ,  . . . , R N .  These positions will be random, independently 
and uniformly distributed in the box. There are also M identical ‘light’ particles at 
positions rl , . . . , r M .  The only interaction will be a point interaction between the light 
particles and the heavy particles. We assume that the light particles are independent, 
distinguishable and not interacting with each other, so that it suffices to consider a 
single light particle moving around the heavy particles. Thus we will study the single 
particle Hamiltonian formally given by 

where - A  is the kinetic energy of the light particle and the A, are the coupling constants. 
Before giving the precise definition of the Hamiltonian (1) in section 2 we will 

discuss the statistical mechanics of this system. 
We have to calculate the partition function Z. Following the well known results 

in [ I ]  we may express 2 in terms of the Watson transform 2 - I  [2] of the spatial 
average ( ) over the positions of the heavy particles of the trace of the resolvent 
difference 

(2) 
Here Z is (Tr e-pHfR.*)) with ,@ = 1 / K T  and Z, = V K 3 ,  with A = (47@)”*, is the free 
gas partition function. G and Go are, respectively, the resolvents of H and H , ,  the 
free Hamiltonian. 

ZZ;’ = 1 + Z;’Y’(Tr(  G - Go)), 
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The standard procedure in corresponding problems with bounded interactions 
instead of the above delta interaction is to introduce the Born expansion for the 
resolvent difference G - Go. This leads directly to the usual virial expansion for the 
pressure P. The pressure is of course given by 

P = - (aF/aV).  (3) 

where the free energy F is -KT In Z. For the free gas Po= K T /  V. Introducing the 
Born expansion into ( 2 )  and applying (3 )  yields a series expansion for P as a function 
of the density. The coefficients of the various powers of p = N /  V in this expansion 
are the virial coefficients. 

We cannot, however, use the Born expansion to study the pressure in the Lorentz 
gas with point interactions since our potential is extremely singular [3,4]. We therefore 
use a different expansion starting from the explicit form for the resolvent difference 
for point interactions in order to obtain an expansion for 

There remains to take the spatial averaging. Here we observe that in order for 
equilibrium to exist we must have a lower limit 2r on the distance between the heavy 
scatterers. This is not a matter of mathematical convenience but a physical necessity, 
because of the singular attractive interaction, some sort of exclusion mechanism is 
required to prevent the system from collapsing. The minimal distance which ensures 
dilution and Boltzmann statistics which we use here provide a useful approximation 
to a more physically realistic Fermi system. To make the spatial averaging we use a 
central limit theorem argument to do the average in the large N limit and we obtain 
conditions for the convergence of this new expansion for the pressure. Though our 
expansion is different from the usual virial expansion, by studying the density depen- 
dence of the coefficients in our expansion, we can determine the usual virial coefficients. 
We will see that to leading order in our expansion 

P =  P , + p ( B + p C ) .  (4) 

Since all higher-order corrections contain at least a factor of p2,  B is the second virial 
coefficient. 

The paper is organised as follows. Section 2 is devoted to a careful definition of 
H( R , ~ ) .  In section 3 we introduce the expansion for G - Go and we study its convergence, 
in particular how this depends on r. In section 4 we use an appropriate lower limit 
on the distance between the scatterers and apply the central limit theorem argument 
to compute the average over allowed positions of the scatterers. This yields our 
expansion which we discuss in the final section 5 .  

2. The model 

We give precise meaning to our formal Hamiltonian I3tR.A) appearing in (1) by 
prescribing [ 5 , 6 ]  that its ground-state wavefunction has the form 
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for a fixed K > 0. This amounts to choosing the infinitesimal coupling constant in order 
to have a prescribed binding energy for the interaction. This is a choice made when 
a particular ground state is chosen. 

As discussed in [3] this is not the only way of making sense of the Hamiltonian 
(1). The complete relation between the two methods is developed in the author's 
thesis. We know that the general form of the resolvent for point interactions is [3] 

N 

( H - k * ) - ' ( x , y ) =  G o ( x - Y ) +  C [ ~ ' n ( k ) - ' l m n G o ( R m - x ) G o ( R n - y )  (2.2) 
m . n = l  

for Im k > 0. Here the N x N matrix r, (k )  has entries 

[ r u ( k ) ~ m n  = ( a m  -z j k )  S,,  - ( H o -  k 2 ) - ' ( R ,  - R , ) ( 1  -a,,,,,) (2.3) 

and 

(2.4) 

We must at this point identify the particular values of a, in (2.3) which correspond 
to the dynamics generated by the ground state 4. To this end we first determine the 
boundary condition obeyed by 4 at the scattering sites. We need only consider the 
s-wave relative to this site [7]. Denoting the s-wave component of 4 by &,, one has 

(2.5) 

Call H, the Hamiltonian with resolvent (2.2). We determine for which a H, has the 
ground state 4 by checking boundary conditions. 

For $ in the domain of H,, we have from [3] the representation: 

* ( x ) =  ( P k ( X ) + C  a , G o ( x - R , )  (2.6) 
I 

where 

a) = [r i '( k ) I j m ~ k  ( R m  

or for short 

a = r-Iq and ( P k  E D(-A). 
Now $ obeys the same boundary conditions as 4 at x = R,, i.e. 

(1 - S, , )G , (R ,  - & ) a ,  + c ~ ~ ( R , )  
$0 r = R ,  

or, for short, after multiplication by a, 

ca = i ku + 4 4  G a  + q )  

with 

G j m  = ( 1  - Sjm)Go(R, - Rm 1. 
Inserting (P = Tu ,  this yields 

ca = 41raa i.e. C) = 4 Ta) . 
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As a consequence all we need to  d o  to determine the resolvent of the Hamiltonian 
given in terms of the ground state 4, is to insert the specific boundary values cJ, i.e. 
the values of CY 

(2.10) 

into the definition of the resolvent operator. 

3. The expansion 

In this section we will study an  expansion for the resolvent difference and  its conver- 
gence. 

From (2.2) we see that we only need to invert the matrix r in order to have an  
explicit expression for the resolvent. 

We write A for the diagonal part of r, ( k )  

(3 .1 )  

and B for the off-diagonal part, with 

B,, = (Ho- k*)-'(R, - R, ) ( l -  S,,). (3.2) 

Our  expansion is based on the observation that 

whenever 

~ ~ A - ' L ? ~ ~  < 1 (3 .4 )  

Here I/ * 11 denotes the matrix norm. Physically (3 .3 )  corresponds to writing the physical 
propagator ( H  - z ) - '  as a sum over intermediate scattering events, in which the vertex 
corresponding to scattering on the heavy particle at R, leads to the insertion of a factor 

(3 .5)  

Notice that, because of the term 

e-" R n i - R i '  c 
i # j  -KIRm 

the other scatterers also contribute to the scattering at R, .  This collective behaviour 
results from the choice (2.1) of the ground-state wavefunction. With respect to the 
convergence of the series (3 .3)  we have to discuss for which values of k, given values 
for K ,  a, ,  . . . , aN, the condition (3 .4 )  is satisfied. This can be easily done, having fixed 
a positive real number r, under the additive hypothesis that the configuration 
( R , ,  . . . , R N )  of the scatterers is in the set S,  defined by 

minlRm-R,I>2r  m. n (3 .6)  
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for some r > 0 .  As 

llA-'BIl =z llA-'Il IlBIl (3.7) 
we start by estimating IIA-'II, observing that in S ,  the following inequality holds. 

With k =  t+is,  s > O  

when 

Also for all k = t + is 

The proof, given in appendix A, is based on the subharmonocity of the function 
e - K I X l  

which leads to the inequalities 

K K 3 
- -Sam 6 --+- 

47r 47r 47rr3K2 (3.9) 

the proof of which is also given in appendix A. We should remark that as r increases 
to infinity, the last result reduces to the obvious result in the one-centre case. 

Next we turn to 11811. For k =  t+is,  s > O  we have 

3 
IlBll G2rrr3s' (3.10) 

(see appendix B). 

expansion (3.3) holds for k = t + is satisfying in the region 
Therefore we conclude that provided the configuration of the scatterers is in S ,  the 

for any positive E.  

4. An application of the central limit theorem 

To leading order in the convergent expansion studied in the last section 

( H - k 2 ) - ' ( x ,  x ) - ( H o - k * ) - ' ( ~ ,  X )  

N -1  

= (am-*)  ( ( H o - k 2 ) - 1 ( x - R m ) ) 2  
m=I  47r 

Hence to leading order 
Tr[( H - k 2 ) - '  - ( Ho - k * ) - ' ]  

(4.1) 
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which gives us 
N 

Tr(H-k2)- ' -Tr(Ho-k2)- '= m = l  (a,,,-*)-'(-&). 4?T (4.3) 

According to (2) we must now average this over the positions of the scatterers 

Recall that 
R I , .  . . , R N  on which C Y ] ,  . . . , depend. 

The region where the scatterers are distributed is taken to be a cubic box of edge 
length N"3L. The volume is then NL3 = V( N) .  The admissible configurations of the 
scatterers are N-tuples ( R I , .  . . , RN) where each R, is in the box and 

minlR, - R,I 2r. (4.5) 
m,n 

Let R c be this set of points. We will average over R with uniform measure. 
So that we have to compute for fixed m (say m = 1) 

(4.6) 

To rewrite this in a form useful for computation, we introduce 

R >  r 

R 6 r. 
(4.7) 

We introduce the new variables R I ,  R l z , .  . . , RIN by 

RI  ,, = R, - RI. 

Clearly the Jacobian of this transformation is unity. Let 

* * .  9 RIN): 9 .  * .  3 RN)ER)*  

Then (4.6) becomes 

Because of the rapid exponential decay of F, the integrand is nearly constant in 
R I .  It differs significantly from its value at R, = 0 only when RI  is close to the boundary 
of the box. Note that of course V( N)lfi(R,)I = and hence @(RI) /  = 161 is indepen- 
dent of R I .  So we can replace the integration over RI  in (4.9) by the evaluation at 
RI  = 0 and (4.9) becomes 

47r 
- K  +I,"=, F ( R , , ) - i k '  

d3RI2 . . . d'R, (4.10) 

Clearly lfil = ( V(N) - ( N  - l):lrr3) N - l  up to a negligible error. Now consider the 
integration in the variable R I 2 .  Again we use the exponential decay of F ;  This 
guarantees us that, as a function of R12 

'I I61 ticor 

41r 
- K  +I,,=, F(RI , ) - ik  N (4.11) 
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is nearly constant outside a ball of fixed (independent of N )  radius. Now of course, 
if we integrate a constant over some region, we do not care about the shape of the 
region; all that concerns us is its volume. Therefore we may freely deform the region 
of integration in RI2  to a ball of volume 

( V ( N )  - ( N  - 1):rrr3) N - l  (4.12) 

and we do not change the value of the integral (4.10). Repeating this procedure for 
the remaining variables, we have replaced the region of integration by an ( N  - 1)-fold 
Cartesian product of sphere of volume V (  N )  -:rrr3( N - 1) .  Making the substitution, 
(4.10) becomes 

4 7  
--K +E,=, F(R1, ) - ik '  d 3 R I 2 . .  . d3R1, N 

This is the expectation value 

) E L K  +E,"=, x, -ik 
4 7  

(4.13) 

(4.14) 

where XI( N ) ,  . . . , X N  ( N )  are independent, identically distributed random variables 
with mean 

up to an exponential error. The main term is 0(1/N).  
The second moment is given by 

up to a term O(e-N).  
The variance a 2 ( N )  is then given by 

a 2 ( N )  = E ( X , ( N ) ) *  - ( M (  N ) ) 2  = E(xl (N))2+o(  1 /  N 2 )  

so 

Hence a( N )  = O(d l /  N ) .  We have 

lim ( N  - 1)M( N )  = 4rrp 
N-C.2 

1 
lim a ( N )  = G- e-Kr= U. 
N-CS J;; 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

This is what permits us to apply the central limit theorem [ 8 ] .  The functions f N ( x )  
given by 

4rr 
--K -m a ( N ) X  + ( N -  l ) M ( N )  -ik f N ( x )  = (4.20) 
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converge uniformly to f ( x )  given by 

f ( x ) = 4 n ( - ~ - @ e - ~ ' X + 4 r r p ( ~ + A )  K K -  e-rK-ik)- ' .  (4.21) 

Then if we introduce normalised random variables Y2( N),  . . . , YN ( N )  by 

as X , , ( N )  = u ( N ) + M ( N ) ,  (4.14) has the same large N 

Application of the central limit theorem should then 

Actually the distribution of Y, , (N)  spreads with N 

(4.22) 

limit as 

(4.23) 

give 

(4.24) 

is just such a way that our 
problem isborderline for the Lindberg condition [8]. Therefore we will not rigorously 
justify our application of the central limit theorem on a priori mathematical grounds. 
Rather, we will give good a posteriori justification of our computation by showing that 
our results agree with previous independently obtained results for the limiting case. 

This last integral is easily computed 

(4.25) 

where y =  ~ + i k - M  and U given in (4.18) and (4.19). We obtain 

where 4 is the error function [ 9 ] .  
From the above computations and remarks on surface errors it follows directly that 

Tr[ ( H  - k2)-' - ( Ho - k2)-'l  lim - 1 
N-Cc V (  N) 

(4.27) 

5. The second virial coefficient and contribution to higher virial coefficients 

In this section we combine the previous results to study the virial expansion for our 
model. Our starting point is the formula 

ZZ,' = 1 +Z,'Lf-'(Tr( G - Go)) (5.1) 
where 2-' is the Watson transform [2] applied to a function f 

Y ' f ( P ) = -  I dze-Pzf(z) 
2 n i  ( 5 . 2 )  
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and the contour C is any counter clockwise contour enclosing the poles of the function 
J: Initially we take any contour staying in the region 

in the upper half-plane and  with 

lim ( Im k) = O .  
Re k - - x  

We take the part of the contour in the lower half-plane to be the reflection. Then 
if we assume for simplicity that negative energy states are absent [ l ]  

d z  e-Pz(Tr( G - Go)) = -1m dz  e-P'(Tr( G - Go)) (5.4) ' 5  27ri 

where z = k'. 

converges. To leading order in p (5.4) equals 
By the results of section 3 the entire contour C is in the region where our expansion 

where we have used the computations leading to (4.3). 
Before performing the integral we take the thermodynamic limit. By (4.27) 

lim Y 1 ( T r (  G - Go)) 
N-lc- V ( N )  

with y ( k )  = y ( h )  = K - M + ik. From (4.18) and (4.19) we see that the argument of 
the error function 4 is large for low density. Hence [9] 

[ ($31 e-y"2u2 = _- 47T 
2 G -  1-4 

U Y 

and (5.6) becomes 

(5.7) 

At this point there are no  obstacles to deforming the contour so that runs arbitrarily 
close to the real axis. Then (5.8) becomes 

(5 .9 )  
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with 

x a o  
x < o  

sgn(x) = 

2 4 ( x )  =- [: dt  e-12. 
J;; 

To express this result more transparently we make a Taylor expansion in the density 
p and we obtain for the continuum contribution 

(5.10) 

From (5.10) we see that the contribution coming from the first term of our expansion 
(3.3) after adding the bound state contribution is given by 

and 

(5.12) 

for high and low temperatures, respectively. The leading term in our expansion for 
the pressure contains terms proportional to p and higher powers of p, unlike, of course, 
the usual virial expansion. With little reflection one sees that the following terms of 
our expansion are at least proportional to p2 .  

Therefore the second virial coefficient is 
B == -47r3/2/33/2 ePK2-g7rP2K 

B I -4=3/2p3/2 e +- 4.rrP 
K 

for high and low temperatures, respectively. 

(5.13) 

(5.14) 

6.  Conclusions 

We have proved that when r > 0 the series expansion (2.3) converges in a region large 
enough to apply the Watson transform. In any expansion, one needs to control the 
effects of multiple scattering. In the usual Born expansion, one uses a bound on the 
interaction to do this. With our singular interaction, we have no such bound. Rather, 
we will control multiple scattering using the diluteness of the scatterers in our model. 
The scatterers are increasingly dilute, of course, as the minimum radius r increases. 
The consistency of this method with previous analysis is shown by the fact that we 
recover the result of section 3 when we consider the contribution of just one scatterer 
when r goes to infinity. 
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The additional terms in (5.10) are of order of p2,  so their contribution to the third 
virial coefficient does not appear when r goes to infinity. 
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Appendix A 

Lemma AI.  For a, satisfying (1.10) we have 

K K 3 --s a, < --+- 
4 x  477 4xr3KZ'  

Proof: From section 2 

Intuitively when r is large, the scatterers are so far apart they act independently 
and a, is very close to - ~ / 4 x  as in the one-centre case. Of course a, > - ~ / 4 x ,  so 
what we want is an upper bound for a, in terms of K and r which reduces to - ~ / 4 x  
as r goes to infinity. 

To do this, we use a subharmonicity argument to bound the complicated sum in 
(A2) with an easily estimated integral. 

Let 

1x1 c r 
3 

Clearly po is positive, spherically symmetric and 

p o ( x )  d3x = 1. J 
Since 

we have 
e-"l"' 

1x1 
= K 2 - > o  for x # 0. 
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That is, the function 
e - " i "  

1x1 

is subharmonic away from x = 0. Subharmonic functions have the property that their 
value at any point is less than their average value on any ball (in the region of 
subharmonicity) centred at that point [ l l ] .  Therefore if we define 

P m  (x)  =  PO(^- R m  1 
and 

N 

g ( x )  = Pm(x) f ( x ) =  C Pn(x) 
n = l  

we have (for m fixed) 

By condition (3.6) for all y 

3 
0 s f ( y )  =s - 

4.irr3' 

Therefore 

and since 

d3xg(x)  d3y--- - 3 (J  d 3 x d x ) )  ';."=,,,.. 3 e -I( 1 x - I, ~ 6 J J /x-yl  47r3 

so 

Now we can estimate lIA-'II. 

Lemma A2. With k = t + is, s > 0 

when 

Also for all k = t + is 
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Proof: By lemma A1 and the first condition above 

a,+-<--+- 
4ir 47r 47rr3K2’ 

S K 6 

Under the second condition above, the term on the R H S  is negative and hence both 
terms are negative. So 

ik K 

Clearly 

K 

m 

Appendix B 

A straightforward argument based on separate consideration of the real and imaginary 
parts gives us 

IlBll ~ 2 1 1 m  (B1) 

where 

and again k = t + is, s > 0. 

Lemma B1. For k = t + is, s > 0 we have 

Proof: Since l? is self-adjoint 

1 1  / I  = SUP I U m B m n U n  I 
II c II = 1 

where 
I / 2  

I I ~ I I  = 1: / u m l 2 1  . 

We can estimate 

2 u m i m n u n  
m.n 

using the subharmonicity argument of lemma A l .  
Let 

N 

f ( x ) =  1 u m p m ( x )  
m = l  
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with pm as before. Then as in lemma A1 

As [12] 

we have 

and  we obtain using the condition (3.6) 

We have finally 

We summarise as follows. 

Theorem B I .  Under the condition (3.6) the series expansion (3.3) for T ; ’ ( k )  converges 
uniformly for k = t + is in the region 

ProoJ Just combine the lemmas. 
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